

SPE Workshop Extended Reach and Horizontal Wells – Challenges and Solutions

15 – 18 March 2015 Renaissance Phuket Resort & Spa Phuket, Thailand

SOCIETY OF PETROLEUM ENGINEERS SPE Asia Pacific (M) Sdn. Bhd. Level 35, The Gardens South Tower, Mid Valley City, Lingkaran Syed Putra 59200 Kuala Lumpur, Malaysia

Keys to Proper Application of MSE in Horizontal/ER Wells

Brandon M. Foster VP of Technical Services K&M Technology Group

- MSE Refresher
 - History
 - What it tells us
- Mechanics of Torque Generation
- Implications for Horizontal / ERD Wells
- Case Study Example

- What is Mechanical Specific Energy (MSE)?
 - Measure of energy used to destroy rock
 - For a known rock strength, efficiency can be inferred

$$MSE = \frac{WOB}{A_{B}} + \frac{120 \times \pi \times RPM \times T}{A_{B} \times ROP}$$

- Origins?
 - Developed by Teale in 1965 (Int. J. Rock Mech. Mining Sci. Vo.2)
 - Evolved / validated by Pessier in the 1992 (SPE 24584)
 - Applied by Waughman in 2002 (SPE 74520)
 - Popularized by Dupriest in the 2005 (SPE 92194)
- Why use MSE?
 - While Drilling: Optimize parameters for maximum performance
 - While Planning: Identify performance bottlenecks

MSE, ERD, and other TLAs

ERD Plot

- Increasing trends may indicate a problem
 - Lateral Vibration
 - Balling
 - Bit Damage / Dulling
- Experimenting from one well to another reveals improvements
 - Better designs result in lower and/or more consistent MSE

- Torque is the most dangerous variable in the MSE equation
 - Need to know torque near bit (not at surface)
 - Surface torque is mostly due to drill string friction in ER wells

- Torque = $N \times \mu \times R_{eff}$
- Normal Force (N) can be generated in 4 ways
 - 1. "Low Side" Gravity pulling pipe to the low side of the hole
 - 2. "Brake Drum" Tension across a dogleg forces pipe into the side of the hole
 - 3. Buckling Forces the pipe into the sides of the hole as compression increases
 - 4. Lateral Vibration
- Mechanisms 1-3 can be easily predicted/modeled
- Mechanism 4 can be inferred

Method	Pros	Cons
On Bottom Torque	Easy	Wrong. Leads to over-estimated MSE and apparent dulling trend. Can't compare MSE for wells with different trajectories
On Bottom – Off Bottom	Fairly Easy	Wrong, may lead to over <i>or</i> under estimation of MSE. Can't compare MSE for wells with different trajectories
Motor ΔP	Fairly easy.	Need a motor in the hole. Actual performance vs. handbook varies and degrades with time.
Down hole WOB/Torque	Can be accurate and close to the bit.	Measurements can drift if not frequently calibrated. By itself, can not differentiate between bit dysfunction and lower BHA dysfunction.
Calculate using T&D Engine	Accurate (if surface measurements are good). Can compare wells of different trajectories. Can reveal certain phenomenon* when combined with other methods	Complicated. Need special procedures, software, and resources.

* For example, when used with ΔP can identify bit balling. When used with DWOB/DTOR placed below an under reamer can differentiate between bit/reamer dysfunction

How to Infer Bit Torque

- 1. Record off bottom torque each stand at drilling
- 2. Back-calculate the TQFF using T&D Model
- 3. Calculate the string-generated torque at each data point;
 - Actual surveys
 - Current WOB
 - Most recent TQFF
- 4. "Down hole" torque is the difference between surface torque and string-generated torque

* Can verify with DWOB/DTOR sensors or motor ΔP

Concept Validation

Consider this ER well

- Very long (>22,000') and shallow (<4,000')
- Tapered 5"x41/2" drill string
- Highly variable WOB, Torque, RPM, ROP
- T&D engine used to normalize string generated torque and attempt to estimated bit torque

Concept Validation

8 3/4" Hole Torque and MSE (35% Efficiency Factor)

Conventional Interpretation:

- MSE is increasing, bit may be dulling
- Shift at 20,500' Whirl?

"Inferred Downhole Torque" Interpretation:

- MSE and torque are fairly constant
- MSE is similar to CCS
- Everything is normal

Down hole measurements agree with calculated torque

- Reduce ROP from 300-150 ft/hr (for logging)

- 1. MSE is a great tool when used properly
- 2. Directional wells skew MSE results / interpretation
- 3. Modeling should be used to remove string torque
- 4. Combining inferred down hole MSE from different sources can reveal interesting phenomenon

Backup Slides

Wellpath Effects

Complex (MD)

Horizontal B&H Complex

Wellpath Effects

Torque vs. Depth - With and Without WOB No Bit Generated Torque Assumed

<u>All wells with 0 WOB:</u> Each has a different off-bottom torque trend

Horizontal well with 40 kips WOB String torque is 4 k ft-lbs (28%) higher

<u>B&H well with 40 kips WOB</u> String torque is 3 k ft-lbs (10%) lower

<u>Complex well with 40 kips WOB</u> String torque is 1 k ft-lbs (4%) higher

Wellpath Effects

