

Why Drillers Need Logs More Than You Think

Presented By: Prepared For: Date: Brandon Foster, PE Montana Tech SPE Symposium April 13th, 2018

© k+m technology group 2018

Outline

- Why Driller's traditionally despise Logs
- Why Driller's should want Logs
- 6 Steps to Build a Mechanical Earth Model from Logs
- Conclusions

Top 4 Reasons Drillers Don't Like Logs

- 1. Logs cost money management often makes \$/ft our #1 directive
- 2. Logs (wireline) take time see #2 (time=money)
- 3. Logs expose us to more risk RST=Repeat Sticking Tool
- 4. (Lack of) Communication The root of most evil
 - the industry has done a poor job articulating the value of logs for/to drillers
 - $-\phi$, s_w, s_o, k, α , R_w might as well be a foreign language because they don't directly affect us
 - Service companies usually put a G&G person in front of the Drillers, who speaks in Communist units and is more interested in the rocks than the implications for Drillers

Why Drillers Should Want Logs

Estimates of Geomechanics Related Costs

- 41% of Drilling NPT is due to WBS Dodson
- \$8 Billion per year Halliburton and Shell
- 10% of total well cost ExxonMobil
- \$6.4 Billion per year Western Atlas
- \$1 Billion per year BP (pre-Macondo)
- >>>\$1 Billion per year BP (post-Macondo)

Drilling Applications

- 1. Avoid Kicks
- 2. Avoid Lost Circulation
- 3. Prevent stuck pipe
- 4. Avoid sidetracks
- 5. Improve ROP

Hidden benefit, not captured in industry NPT estimates.

3 Tiers of Drilling Engineers

1.

2. Medium – Calculates PP/FG using seismic, sonic, resistivity, or dx using the Eaton equation (or similar)

3. Spicy – Builds their own Mechanical Earth Model from logs. Calibrates model and uses output to design trouble-free wells

Mild – Doesn't calculate PP/FG. Expects someone else to provide it.

Blames problems on "rotten shale" or an "Indian Burial Ground"

Mild Drilling Engineering

- In most wells the PP/FG is not calculated, especially in a developed area
 - "Pressures are known"
 - "We didn't have problems on the last well"
 - "That's more of an offshore thing"
- Instead, we often make something up, often based on "experience"

Medium Drilling Engineering (Predicted PP/FG)

- Predicting pore pressure from seismic, sonic, and/or resistivity is common in offshore settings (especially exploration)
- The fracture gradient can be approximated PP and the overburden
- Turns out, the same techniques can be applied *onshore*...
- ...but we needn't stop there...

Spicy Drilling Engineering (Full MEM)

What is a Mechanical Earth Model (MEM)?

1. Elasticity: E, v

- **2.** Strength: UCS, ϕ_f
- **3. Stress**: σ_v, σ_H, σ_h, P_p

"All models are wrong, but some are useful."

- George Box, 1976

Step 1: QC Logs

k+m

Step 2: Determine Lithology (Gamma Ray)

k+m

Step 3: Calculate σ_v / Overburden (Bulk Density)

Step 4: Calculate Pore Pressure (Sonic)

Step 4: Calculate Pore Pressure (Sonic)

k+m

Step 5.1: Calculate σ_h (Dipole Sonic)

Step 5.2: Infer σ_{H} (Image Log, Multi-Pole Sonic)

k+m

Step 6: Calibrate

Output / Answers

In Summary

- 1. Drillers:
 - Be Spicy Take ownership of understanding and using logs to benefit the drilling process
 - Experts can help you down the learning curve you are not alone!
 - Geomechanics tools are commercially available! <u>https://www.kmtechnology.com/software</u>
- 2. Non-Drillers:
 - Start a conversation with your Drillers about the logging program and what they might need
 - Don't turn the logs off above the reservoir!
 - You can't afford to *not* run Sonic
- 3. Everyone:

k+m

- Stop wasting money on hole problems that could have been avoided
- Let's start talking about logs *beyond* the context of reservoir engineering and petrophysics
- Don't let it take 20 years to learn that logs can improve drilling

Questions?

Overburden Equation (σ_v)

$$\sigma_v = a(TVD - WD)^b + WD\rho_w g + P_a$$

Constant	Offshore GOM	Onshore US
а	0.545	0.382
b	1.0612	1.1035

Where:

- σ_v = Vertical / overburden stress, psi
- TVD= True Vertical Depth, ft
- WD= Water Depth, ft
- ρ_w = Water density, ppg
- g= Gravitational constant (0.052 on Earth)
- P_a = Atmospheric Pressure, psi (14.7)
- a=Fitting coefficient
- b=Fitting exponent

Page 21

Pore Pressure Equations (P_p)

$$V_n = V_o + A + \sigma'_{vnorm}{}^B$$

$$\sigma'_{vnorm} = \sigma_v - P_{hyd}$$

$$P_p = P_{hyd} \left(\frac{V_{log}}{V_n}\right)^{-e}$$

Where:

- σ_v =Overburden stress, psi
- σ'_{vnorm} =Normal effective overburden stress, psi
- P_{hyd}=Normal Hydrostatic Pressure, psi
- P_p = Pore Pressure, psi
- V_o=Velocity under zero stress, ft/sec (4600)
- V_n=Value of normal shale velocity, ft/sec
- V_{log}=Velocity from log, ft/sec
- A= Bower's coefficient (1-100)
- B= Bower's exponent (0.5-0.9)
- e= Eaton exponent (0.6 to 1.6)

Page 22

Horizontal Stress Equations (σ_h and σ_H)

$$\sigma_h = \frac{\nu}{1-\nu} \sigma_\nu' C_h + P_p$$

 $\sigma_h' = \sigma_h - P_p$

 $\sigma'_H = \sigma_h' C_H$

k+m

$$\sigma_H = \sigma'_H + P_p$$

Where:

- v= Poisson's Ratio, unitless
- σ_v =Vertical stress, psi
- σ'_v =Effective vertical stress, psi
- σ_{H} =Maximum horizontal stress, psi
- σ'_{H} =Effective maximum horizontal stress, psi
- σ_h =Minimum horizontal stress, psi
- σ'_{h} =Effective minimum horizontal stress, psi
- P_p = Pore Pressure, psi
- C_h=Min Horizontal stress calibration factor (1.0-1.8)
- C_H=Max horizontal stress calibration factor (1.0-1.5)

Elastic Equations (v and E)

$$v = \frac{\frac{1}{2} (\Delta t_s / \Delta t_c)^2 - 1}{(\Delta t_s / \Delta t_c)^2 - 1}$$

$$G = 1.34 \times 10^{10} \frac{\rho_b}{\Delta t_s^2}$$

$$E_{dyn} = 2G(1+v)$$

$$E_{stat} = 0.032 E_{dyn}^{1.623}$$

Where:

- v= Poisson's Ratio, unitless
- G= Shear Modulus, GPa
- ρ_b = Bulk Density, gm/cm³
- E_{dyn}= Dynamic Young's Modulus, GPa
- E_{sta}=Static Young's Modulus, GPa
- Δt_c =Compressional travel time, μ s/ft
- Δt_s = Shear travel time, μ s/ft

Rock Strength Correlations (UCS and ϕ_f) Part 1/2

UCS correlates well with compressional travel time, Δt_c (DTCO)

$$UCS_{sh} = 111.7 \left(\frac{304.8}{\Delta t_c}\right)^{2.93} \quad \text{Horsrud, 2001}$$
$$UCS_{sd} = 174000e^{(-0.036\Delta t_c)} \quad \text{McNally, 1987}$$
$$UCS_{carb} = 10^{\left(2.44 + \frac{109.14}{\Delta t_c}\right)} \quad \text{Golubev, 1976}$$
$$UCS_{salt} = \frac{6823.8}{(\Delta t_c - 40)^{0.2912}} \quad \text{Olea/Andrews, 2008}$$

k+m

Where:

- Δt_c = Compressional travel time, μ s/ft
- UCS_{sh} = Shale Compressive Strength, psi
- UCS_{sd} = Sand Compressive Strength, psi
- UCS_{Carb} = Carbonate Compressive Strength, psi
- UCS_{Salt} = Salt Compressive Strength, psi

Rock Strength Correlations (UCS and ϕ_f) Part 2/2

Friction angle correlates with Gamma Ray

- If GR>147, φ_f=15
- If GR<13, φ_f=40
- 13<GR<147, φ_f=42.5-GR*0.1875

Where:

- GR= Gamma Ray, api
- ϕ_f = Friction Angle, °

Page 26

Geomechanics Engine

- Stress Tensor Rotation Zoback, Chapter 8
- Hoop Stresses around the borehole Kirsch (or Jaeger and Cook if you don't speak German)
- Shear Failure Criterion Rahimi (*Mohr Coulomb* is most common, but *Modified Lade* tends to be the most realistic / accurate)

References

- Bowers, "State of the Art in Pore Pressure Estimation", DEA 119, 1999
- Zoback, "Reservoir Geomechanics", Cambridge University Press 2007, ISBN-978-0-521-77069-9
- Chang, "Empirical relations between rock strength and physical properties in sedimentary rock", Journal of Petroleum Science, 2006
- Jaeger and Cook, "Fundamentals of rock Mechanics, 4th Edition", 2007
- *Kirsch, "Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre, Zeitschrift des Verlines Deutscher Ingenieure", 1898*
- Lacy, "Dynamic rock mechanics testing for optimized fracture designs", SP 38716, 1997
- Rahimi, "What Difference Does Selection of Failure Criteria Make in Wellbore Stability Analysis?", ARMA 14-7146, 2014

