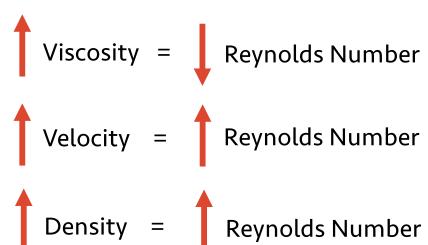
Completion Operations Education Series

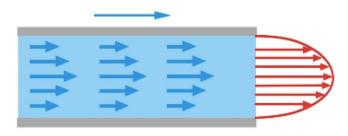
Reynolds Number

Reynolds Number is a convenient parameter for predicting if a flow condition of a moving fluid

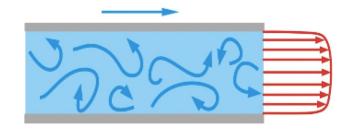
Laminar Flow < 2,300


Turbulent Flow > 11,500

Plug Drillout Application


For hole cleaning purposes we would like to stay in turbulent flow is possible

We can control the annular velocity, fluid density, and viscosity of the fluid


Influencing Factors

Laminar Flow

Turbulent Flow

Formula

$$Re = \frac{928 * \rho * v * (d_2 - d_1)}{60 * \mu}$$

Re =Reynolds Number ρ = Fluid Density (ppg) v = Annular Velocity (ft/min) d_2 = Casing ID (inches) d_1 = Workstring OD (inches)

 $\mu = Viscosity (cp)$

CAL DES